Developing biocontrol methods and their integration in sustainable pest and disease management in blackcurrant

> Jerry Cross, Xiangming Xu, Angela M Berrie Michelle Fountain, Adrian Harris East Malling Research

> > Rex Brennan James Hutton Institute

David Hall Natural Resources Institute

Horticulture LINK Project HL01105 1 Apr 2010-31 Mar 15

Aims of project

 Develop alternative, sustainable biological methods for management of

> Grey mould (*Botrytis cinerea*) Leaf midge (*Dasineura tetensi*) Sawfly (*Nematus olfaciens*)

- Devise Integrated Pest and Disease Management (IPDM) programme
- Evaluated and refine in large scale field experiments in final two years of the project

- Correlation of varietal susceptibility with physiological characters
- Biocontrol Agents (BCAs)
- Pollination
- Filter blocking

Botrytis susceptibility of varieties in relation to morphological characters

Sampling of variety trial sites

Botrytis increased with

late development within a season

number of flowers per node

fruit losses on the ground

decreasing fruit size

 Magnitude of correlations very low (0.22-0.37) although statistically significant

Positive correlation of latent botrytis with late harvest date (variety trial sites)

Harvest date

Incidence of fruit infection (inoculated 4-5 weeks after flowering) on selected blackcurrant varieties

Genotypes (not shown here)

Evaluation of BCAs as part of an integrated programme with conventional fungicides

Biocontrol Agents (BCAs)

Seranade	Bacillus subtilis	Bacterium
Prestop	Gliocladium catalanum	Fungus
Trianum	Tichoderma	Fungus
Boniprotect Forte	Aurobasidium pullulans	Yeast

Treatments 2011 (Ben Tirran)

Sprays at 7-10 days from 1st flower

- 1. Untreated
- 2. Bravo, Teldor, Switch, Signum
- 3. Serenade x4
- 4. Serenade x5 from pre-flower
- 5. Prestop x4
- 6. Trianum P x4
- 7. Bravo, Teldor, Switch, Serenade, Serenade
- 8. Boniprotect Forte x4
- 9. Bravo, Teldor, Switch
- 10. Bravo, Teldor, Switch, Serenade

% latent infection in green and ripe fruit

Control of infection during flower

- All treatments reduced Botrytis
- Best treatment (4 x fungicide) reduced Botrytis from 12 to 3.8%
- Only 3 early fungicide sprays plus 2 late BCAs sprays as effective
- First 3 fungicide sprays are essential
- 4 BCA applications reduced Botrytis from 12% to 6.6-8.1%
- BCAs much more costly than fungicides
- Repeated in 2012

Pollination – 2010 cage trials

Fruit set

Gairn: Higher fruit set in Bombus and open pollinated Hope: Poor fruit set in open

Weather conditions during flowering

2011 Insect exclusion trials

2011 Insect exclusion trials

Up to 35 % less fruit set on strigs with insect exclusion nets

Pollinator diversity in blackcurrant

2010 - EMR blackcurrant plantation on 3 sampling dates

Wild bees (10 sp.)
Bombus terrestris, B. vestalis, B. apidarius
Andrena carantonica, A. nigroaenea, A. haemorrhoa,
Halictus tumulorum,
Lasioglossum morio, L. calceatum,
Osmia rufa)
Hoverflies (4 sp.)
Epistrophe eligans, Eupeodes luniger, Platycheirus peltatus, P. albimanus

2011 – 8 commercial plantations on 1 date

Wild bees (10 sp.)
Bombus lapidarius, B. terrestris
Andrena dorsata, A. flavipes, A. fulva, A. haemorrhoa, A. helvola, A. nigroaenea, A. nitida
Lasioglossum calceatum
Bee fly
Bombylius major
Queen wasp
Dolichovespula saxonica
Hoverflies (2 sp.)
Melanostoma mellinum, Syrphus ribesii

Total 15 species of wild bee found altogether

Bees visiting blackcurrant flowers

	No. bees with		% bees with	
	blackcurrant pollen on head	Total No. assessed	blackcurrant pollen on head	% of pollen that was blackcurrant
B terrestris	12	20	60	4
Other bees	15	40	38	18

Pollination- conclusions to date

- Vulnerability of blackcurrant to poor pollination in poor weather - not adequate for insect activity
- Up to 36% less fruit set if flowers not visited by insects
- Supplementing natural populations of pollinating insects with bumblebees may ensure a high yield
- 9 plantations 15 species of wild bee identified
- Very few honeybees
- Bumblebees from the nest boxes and wild solitary bees were shown to forage on blackcurrant by the identification of the pollen on their heads
- Affects on Botrytis not yet validated, but bees carry Botrytis spores

Objective 2 – leaf midge

Objective 2 – leaf midge

- Crop damage assessment established bushes cut down bushes
- Pheromone trap calibration
- Efficacy and timing insecticides
- Feasibility of pheromone control

Farm	County	Variety	Age (yrs)
Mile Oak	Kent	Alder	7
Wellbrook	Kent	Alder	7
Red House	Suffolk	Норе	9
Newlands	Kent	Норе	7
Oxhouse	Hereford	Tirran	4
Bradfields	Somerset	Tirran	18 (3 cut)
Bradenham	Norfolk	Tirran	2

Bradfields Fm, Somerset - Ben Tirran

Leaf midge crop damage assessment 2010

Leaf midge crop damage assessment 2011

Cut down regrowth 2011

Insecticide timing & efficacy 2010

Blackcurrant sawfly (Nematus olfaciens)

Blackcurrant sawfly

- Demonstrate sex pheromone attraction and investigate mating behaviour
- Identify sex pheromone
- Develop lure and trapping system, and calibrate in the field

Female attraction - Trap design

GC-EAG analysis

- Good progress being made on all objectives
- Evaluate IPDM in commercial crops in last 2 yrs of project

The Consortium

Science partners

• EMR, NRI, JHI

Industry partners

- GSK, Bayer, Fargro, Red Beehive Co
- Ian Overy farms, Wellbrook farms, R Boucher & Son, Maynards, Bradenham Hall Farms, Bradfields Fm Ltd, Corbett Fms Ltd, J Youngman & Sons, Adamston Fms Ltd

Funders

Defra, RERAD, GSK blackcurrant growers fund/HDC