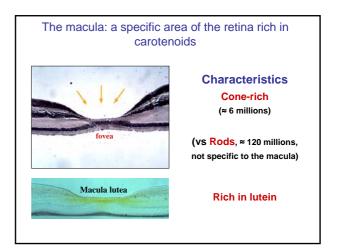
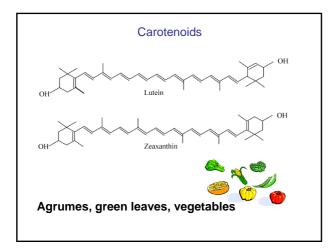


The retina: an ideal environment for oxidative stress

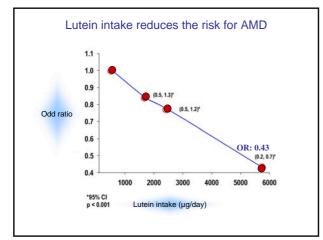
- ${\rm O}_2$ consumption by the retina is much greater than by any other tissue,
- The retina is subject to high levels of cumulative irradiation,
- Photoreceptor outer segment membranes are rich in polyunsaturated fatty acids, which are readily oxidized and which can initiate cytotoxic chain-reactions,
- The retina and RPE contain photosensitizers (rhodopsin, lipofuscin),
- The process of phagocytosis by the RPE is itself an oxidative stress and results in the generation of reactive oxygen species.

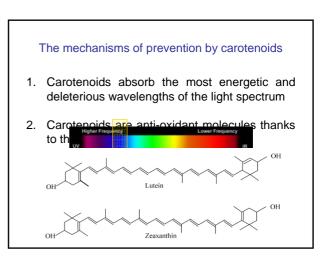

May dietary compounds prevent the retina from aging and the development of AMD ?


Treatment	Participants in AMD Categories 2, 3, and 4 (n = 3609)		Participants in AMD Categories 3 and 4 (n 2556)	
	OR (99% CI)	PValue	OR (99*+ CI)	PValue
Antioxidants vs no antioxidants	0.87 (0.70-1.09)	.12	0.83 (0.66-1.06)	.05
Zinc vs no zinc	0.82 (0.66-1.03)	.02	0.79 (0.62-0.99)	.009
Antioxidants vs placebo	0.80 (0.59-1.09)	.07	0.76 (0.55-1.05)	.03
Adjusted	0.77 (0.56-1.05)	.037	0.76 (0.54-1.05)	.03
Zinc vs placebo	0.75 (0.55-1.03)	.02	0.71 (0.52-0.99)	.008
Adjusted	0.71 (0.51-0.98)	.0057	0.70 (0.50-0.97)	.005
Antioxidants + zinc vs placebo	0.72 (0.52-0.98)	.007	0.66 (0.47-0.91)	.001
Adrusted	0.68 (0.49-0.93)	.002	0.66 (0.47-0.93)	.001
Total No. of participants with	803		775	

Anti-oxidants (vit C, vit E, β -carotene) do not prevent from AMD, but do in combination with Zinc

⁴Adjusted for age, sex, race, AMD category, and baseline unoking status.


	Onega-5. p	rotective fac	1015
		Early AMD	Late AMD
		Odd-ratio	
Lipids		1.54	2.90
Omega 6	Linoleic acid (LA)	1.49	2.00
Omega 3	Total omega 3		0.61
	Linolenic acid		0.61 (low LA)
	EPA		0.44 (Geogr. atrophy
	EPA+DHA		0.45 (Geogr. atrophy
	DHA	0.70	0.54
	Tuna fish		0.48
	Fish oil	0.65	0.36 (low LA) 0.60 (low LA)



Variables associated with the macular pigment

	Nature of the association	
Age	Ø	
Sex	Ø, H>F	
Right/left eye	Ø	
Iris color	Ø, light <dark< td=""></dark<>	
Smoking habits	Smoker <non-smoker< td=""></non-smoker<>	
Obesity	High BMI – low macular pigment	
Dietary intake	>0	
Plasma levels	>0	
· ·		
	Carpentier et al. 2009 Crit Rev Food Sci Nut	

Clinical trial

AREDS-2 (Age-Related Eye Disease Study-2)

- 11 centers in USA
- randomized clinical trial
- 4000 participants during 5 years
- dietary supplementation with:
 - EPA (650mg/d) + DHA (350mg/d) - and/or lutein (10mg/d) + zeaxanthin (2 mg/d)
- Criteria: progression of AMD into late stages

Conclusion

- Oxidative stress is an intimate mechanism of aging of the retina and tightly associated with the development of AMD
- Compounds with anti-oxidant properties may be beneficial in the prevention of oxidative stressmediated cell dysfunctions